A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides
نویسندگان
چکیده
The successful development of high-affinity gapmer antisense oligonucleotide (ASO) therapeutics containing locked nucleic acid (LNA) or constrained ethyl (cEt) substitutions has been hampered by the risk of hepatotoxicity. Here, we present an in vitro approach using transfected mouse fibroblasts to predict the potential hepatic liabilities of LNA-modified ASOs (LNA-ASOs), validated by assessing 236 different LNA-ASOs with known hepatotoxic potential. This in vitro assay accurately reflects in vivo findings and relates hepatotoxicity to RNase H1 activity, off-target RNA downregulation, and LNA-ASO-binding affinity. We further demonstrate that the hybridization-dependent toxic potential of LNA-ASOs is also evident in different cell types from different species, which indicates probable translatability of the in vitro results to humans. Additionally, we show that the melting temperature (Tm) of LNA-ASOs maintained below a threshold level of about 55°C greatly diminished the hepatotoxic potential. In summary, we have established a sensitive in vitro screening approach for assessing the hybridization-dependent toxic potential of LNA-ASOs, enabling prioritization of candidate molecules in drug discovery and early development.
منابع مشابه
Acute hepatotoxicity of 2′ fluoro-modified 5–10–5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins
We reported previously that a 2' fluoro-modified (2' F) phosphorothioate (PS) antisense oligonucleotides (ASOs) with 5-10-5 gapmer configuration interacted with proteins from Drosophila behavior/human splicing (DBHS) family with higher affinity than PS-ASOs modified with 2'-O-(2-methoxyethyl) (2' MOE) or 2',4'-constrained 2'-O-ethyl (cEt) did. Rapid degradation of these proteins and cytotoxicit...
متن کاملIn silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization
With many safety and technical limitations partly mitigated through chemical modifications, antisense oligonucleotides (ASOs) are gaining recognition as therapeutic entities. The increase in potency realized by 'third generation chemistries' may, however, simultaneously increase affinity to unintended targets with partial sequence complementarity. However, putative hybridization-dependent off-t...
متن کاملA Biotechnological Perspective on The Affinity Magnetic Separation and Purification Based on Oligonucleotides
The rapidly growing field of biotechnology has created a critical need for simple, fast andhigh-throughput processes for the separation and purification of biomolecules from biologicalmatrices. In recent years, several bioseparation techniques have been proposed as advancedalternatives to the classical separation methods. These modern processes emphasize ultrahighselective and sensitive analysi...
متن کاملHepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts
High affinity antisense oligonucleotides (ASOs) containing bicylic modifications (BNA) such as locked nucleic acid (LNA) designed to induce target RNA cleavage have been shown to have enhanced potency along with a higher propensity to cause hepatotoxicity. In order to understand the mechanism of this hepatotoxicity, transcriptional profiles were collected from the livers of mice treated with a ...
متن کاملآپتامرها، جداسازی، اصلاحات، خصوصیات و کاربردها
As synthetic oligonucleotides with high affinity and selectivity, aptamers have an outstanding potential for medical diagnosis and treatment. This manuscript enquires into the generation, characteristics and applications of aptamers. The role of aptamers in medicine is also discussed. The study shows that aptamers stand as great candidates in medical sciences for development of biosensors and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2018